
J .  Fluid Mech. (1988), vol. 192, pp. 17-31 

Printed in Great Britain 

17 

Excitation of long internal waves by groups of 
short surface waves incident on a barrier 

By YEHUDA AGNON 
Department of Mathematics, MIT, Cambridge, MA 02139, USA 

A N D  CHIANG c. ME1 
Department of Civil Engineering, MTT, Cambridge, MA 02139, USA 

(Received 17 July 1987) 

The effects of diffraction by a long barrier on second-order long waves forced by 
sinusoidally modulated short incident waves are examined for a two-layered model 
ocean. When the group velocity of the short waves lies between the phase velocities 
of the longest baroclinic and barotropic modes, long internal waves of the frequency 
equal to twice the modulational frequency of the short waves are found to radiate 
away from the edge ray which divides the geometrical shadow and the illuminated 
region. I n  particular the baroclinic wave can penetrate the shadow. This penetration 
occurs when the internal long wavc is not resonated by short surface waves. 

1. Introduction 
It is well known that surface waves can interact nonlinearly to produce internal 

waves. Past research on this topic has been concentrated on the resonant interaction 
of two surface-wave components with an internal wave mode in an open sea without 
interruption by a scatterer. Typical of these studies are Ball (1964), Thorpe (1966), 
Lewis, Lake & KO (1974), Joyce (1974), and Dysthe & Das (1981). In  this paper we 
report an investigation of the added effect of a scatterer. The physical motivation is 
to see whether long waves caused by the interaction of short waves can penetrate 
zones which are sheltered from short waves. As an illustration we select a thin and 
straight barrier extending from y = 0 to 03, attacked by slowly and sinusoidally 
modulated surface waves incident normally in the positive x-direction as sketched in 
figure 1 .  From geometrical optics for infinitesimal waves, we expect that the first 
quadrant in the horizontal (x,y)-plane is a shadow zone free of short waves, the 
second quadrant has incident and normally reflected waves of equal amplitudes, and 
the third and fourth quadrants have only the incident waves. Because of the slow 
modulation, second-order set-downs are forced. These are long waves with a 
frequency twice the modulational frequency of the short waves and propagate in the 
same direction as, and a t  the group velocity C, of, the short wavetrains. Relative to 
the long wave scale, the short waves change suddenly across the z-axis, and so do 
these set-downs. Physical requirement for smoothness can be met only if additional 
free waves of the same long period are radiated from the x-axis on both sides of the 
breakwater. They consist of both surface (barotropic) and internal (baroclinic) modes 
each with its own phase velocity U s  and U ,  respectively. If U ,  < C, < U s ,  the free 
internal waves must propagate in directions different from those of all other waves 
and can enter the shadow behind the barrier. 

In  this paper we describe a quantitative theory for this second-order phenomenon 
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FIGURE 1. A barrier in a two-layered sea. 

in a two-layered fluid. We first discuss the second-order set-downs locked to simple 
progressive waves, then the diffraction boundary layers around the edges (the x-axis) 
of the shadow and the reflection zones. In these boundary layers, correction to 
geometrical optics for diffraction of the short waves is made with the help of the 
parabolic approximation. However, it will be shown that these boundary layers are 
only of local importance for providing a smooth transition, and the second-order long 
waves on either side of the transition can be matched directly. In particular the 
amplitude of internal long waves propagating into the shadow of the barrier is 
determined. 

2. The nonlinear governing equations 
Consider a two-layer fluid with the lower layer of density p and static depth h, and 

the upper layer of density p' and static depth h'. The origin of the coordinate system 
is chosen at the static interface between the two layers with the z-axis pointing 
upwards. The full nonlinear equations for the velocity potential in the upper layer 
and the free surface displacement are 

In the lower layer the governing equations are 

G X x +  @yu+@zz = 0 ( - h  < z < g ) ,  
QZ = 0 (2 = - h ) .  

A t  the interface z = 6, the boundary conditions are 

6 = @z-@xQ-@P,cy = @;-@;cz-@;cP,, 
p[ @t + gy + $(@; + @; + @:)I = p"@; + gy + &D;2 + @? + @3]. 

(2.6) 

(2.7) 

On both sides of the barrier, the x-component of the velocity in both layers must 
vanish. Far away from the tip of the barrier, the radiation condition must be 
satisfied. 

Let w be the frequency of the short waves, e be the measure of the small-wave slope 
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and SZ be the modulational frequency which is of the order ew. The solution can be 
sought in terms of multiple-scale expansions : 

m n 
e-imwt @ =  C en Z $nm I 

n=l m--n 

m n 
5 = en Cnm ePimwt, 

n=1 m=-n 
(2.9) 

where $nm(x, Y, 2, ~ 1 ,  t l )  = $:, -m, CnmCX, Y, ~ 1 ,  ~ 1 1  tl) = C:, -m> (2.10) 

with z1 = EX, y1 = ey, t, = et. (2.11) 

The superscript ( * ) denotes the complex conjugate. By Taylor expansion around the 
static free surface a t  z = h’ and also around the static interface at  z = 0, and by using 
the assumed expansions, one gets a sequence of perturbation problems for each set 
of indices (n, m).  We note that the potentials $11, $il and the displacements Cll, Gl 
correspond to the first-order short waves, while the potentials $lo, $io and 
displacements Cz0, C;,, correspond to the second-order long waves. 

For later use we first recall from standard literature (e.g. Lamb 1932, p. 372) some 
elementary results for simple progressive waves a t  the first order. The potentials in 
the two layers are 

$,, = A,f (z )  eikx = A ,  cosh k ( z +  h) eikz ( -  h < z < 0 ) ,  (2.12) 

$il = Aof’(z) eikz = A,(C coshkz+B sinhkz) eikz (0 < z < h’), (2.13) 

(2.14) where 

The free surface and the interface displacements are 

B=sinhkh,  C =  c) 7 coshkh- (2) - ~ sinh kh. 

(2.15) 
ik Gl = $a eikz, C,, = ;Ao sinh kh eik“, 

where a = 2iw f’(h’) A,/g.  The dispersion relation is 

w4(p cothkh cothkh’+p’)-w2p(cothkh’+cothkh)gk+(p--p’)g2k2 = 0. (2.16) 

Thus for a given k, there are two roots for w 2 ;  the larger root corresponds to the 
surface wave (barotropic) mode, while the smaller root to  the internal wave 
(baroclinic) mode. Of later use is the limit of long waves where kh, kh’ < 1 .  Equation 
(2.16) can be reduced to 

or 

@y - g(h + h’) (E! + g2hh’ = 0, 
P 

[(;y-og][(X)’-a:] = 0. 

The two roots are simply, 

{:!} =&{h+h’k[(h-h.)1+4hh’- “I1 P , 

(2.17 a) 

(2.17b) 

(2.18) 
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where U s  and U ,  are the phase velocities of the surface and internal modes 
respectively. Since the density difference is usually small 

(P-P’ IP = AP/P + 1, (2.19) 
we may approximate (2.18) by 

U s  z [g(h + h’)]:, UI r [gh’( A p / p ) $  (1 + h’/h)-i. (2.20) 

Throughout this paper the incident wavetrain is assumed to be of the surface wave 
mode corresponding to the larger root of (2.16). 

3. Long waves locked to the progressive short waves 
Conservation of mass in the lower layer requires, exactly, that  

Accurate to the order O(c2), the above equation may be approximated by 

Substituting 
and in space 

the expansions (2.8) and (2.9) and taking averages in time over 2x/w 
over 2x/k, we get, 

g o t ,  + hV: $10 + ‘1. [[?I ‘h $11 + *1z=O = (3.3) 

where cz0 denotes the spatial average of czo, vh = (a/ax:, a/ay), V, = ( a / a x , ,  a/ayl) and 
* denotes the complex conjugate of the preceding term in the same brackets. The 
potential $lo can be shown to be independent of the short scales x, y, z and t (Agnon 
& Mei 1985). Although each term is associated with O(c3) ,  there is no contribution to 
(3.3) by the omitted terms on the right-hand side of (3.2). Similarly, conservation of 
mass in the upper layer gives exactly 

(3.4) 

which in turn gives 

c2Ot,  - czot ,  + h’V:#10 + ‘1. [g? ‘h $ i l+  *lz=h -‘l. [cfl vh $il+ *I,=, = O. (3.5) 

The potential #io depends on the long scales only. Furthermore Bernoulli’s equation 
implies 

- 

on the free surface, and 

P’bC20 + 4 ; o t ,  + IIV$ill2 + (iW511 $;L + *)I> 

= PCSGO + $ lo t ,  + [IV$l1l2 + ( iWC11 $fl,+ *lLO, (3.7) 
on the interface. 

Let us assume the short surface waves to be modulated sinusoidally, i.e. 
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where C, is the group velocity of the short wave. In view of the quadratic terms in 
(3 .3) ,  (3 .5) ,  (3 .6) ,  and (3 .7)  the long-wave response must have both a steady 
component independent of t ,  and a sinusoidal component in the following form 

(3 .9)  

The steady component corresponds to the set-down and will not be discussed here. 
The periodic component is just the locked long waves, denoted here by the 
superscript L. From (3.3), (3.5), (3 .6)  and ( 3 . 7 ) ,  we easily obtain a matrix equation 

(45ko, #’to, <to, Ct0) = Re [ ( E ,  E ,  Z ,  2’) exp-2iQ(tl -xl/Cg)]. 

- 

1 0 

- 1  1 

( P - P ’ ) 9  0 

0 - 9, 

where the componenbs on the right-hand side are 

N =  

= k2 

- h  - 
C; 

0 

- P  
0 

1 .  
- sinh 2kh 
0% 

1 
__ [ (B2 + Cz) sinh 2kh’ + 4RC sinh2 kh’] 

p-p’(C2- B2)  

C2- B2 

The coefflcient matrix in (3.10) is 

0 

Its  determinant can be reduced to 

1 
I IN1 I = q {Pc; -pg(h + h’) q + (p  - p ’ )  g2hh’) 

1 
= ,p(c;-u:) (Ci-u:), 

c* 

(3.10) 

(3.11) 

(3.12) 

(3.13a) 

(3.136) 

where U ,  and U s  are the phase speeds of equation (2.18). If the group velocity of the 
short waves is near U ,  or Us,  the matrix equation (3.10) is nearly singular, i.e. 
periodic groups of short waves can resonate either of these long waves. Of later use 
in this study are the amplitudes E ,  E 2, and Z’ which can be calculated by inverting 
the matrix. Some sample results for Z and Z’ are plotted in figure 2 (a ,  b )  as functions 
of kh’ with h’lh as a parameter. The relative density difference is taken to be 
Aplp = 0.01. Results for Ap/p = 0.001 are similar and are not shown here. Note that 
for kh‘ 4 0, both locked long waves become unbounded since C, 4 Us.  When kh’ is 
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FIGURE 2. (a) Amplitude of the locked long wave on the free surface. ( b )  Amplitude of the 
locked long wave on the interface. 

sufficiently large, C ,  U ,  ; the locked long interfacial wave becomes unbounded, but 
the locked long surface wave does not. While the initial tendency of resonance is 
evident in figure 2 ( b ) ,  the immediate neighbourhood of resonance is beyond the range 
of kh' plotted here. Note that the matrix N and the 01 are independent of the 
modulational frequency 0, therefore, 0 E ,  QE, Z and Z' are the same for all Q. This 
means, in particular, that in the limit of uniform incident waves, 0 = 0, these locked 
long waves also become steady set-downs. 

To get bounded response near resonance, higher-order nonlinearity is needed in a 
treatment involving much longer time and space scales than are considered here. 
This was discussed in the works cited in Q 1 .  Our objective is to  examine the effect of 
diffraction in the space and time domain of kx, ky, ot = 0(1/~). 

4. The short-wave diffraction 
For a uniform wavetrain the diffraction problem for a semi-infinite barrier has 

been solved exactly. But for our purposes the parabolic approximation is simpler and 
adequate, In this approximation we write q411 and as the sum of a right-going 
wave and a left-going wave with diffraction factors which are important near the 
rays passing the tip of the barrier. In  the present case of normal incidence these 
critical rays all lie on the x-axis, 
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J i  
3 4 

FIGURE 3. Radiation zones of free baroclinic long waves.Lines B a n d  a are the bounding members 
of the family of rays emitted from the positive z-axis; 02 and 03 are the bounding members of the 
family of rays emitted from the negative x-axis. 

where inf andf', (cf. (2.12) and (2.13)), w and k are those of the short-surface-wave 
mode. According to  the parabolic approximation (see e.g. Mei 1983), we have 

and 
x > o  

#- = {D1,) { x  < 0) (4.3) 

(4.4) 
1 

~ ( c r )  z - {t + ~( a )  + i[+ + ~(a)]} e+, 

with CT = ky/(xklx$,  (4.5) 

D(cr)+l forcr-t+oo, D(a)+O foru+--co. (4.6) 

4 2  
where 

C and S are Fresnel cosine and sine integrals. It is sufficient to note that 

The approximation (4.1) is very good away from the sharp tip as long as kr $ 1 where 
r2 = x2  + y2,  hence also where kx, = O( 1). The edge boundary layer, i.e. the near field 
of the x-axis, which is the transition strip of the shadow or of the reflection zone can 
be defined as 

(4.7) 

Since for the long waves we are interested in the far field defined by ckx = Ex, = O( 1) 
and eky = ky,  = 0 ( 1 ) ,  the width of the edge boundary layer is ky = O(&) or 
ky, = O(&, and is small. 

CT = ky/(xklxl)t = O(1).  
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Taking into account the modulation of A in (4.1), the first-order short wave can 
be re-expressed as 

where the envelope is given by 

A(tJ = Biwf’(h’) ga cos Bt, = A ,  cos Bt,. (4.9) 

Far outside of the edge boundary layer, ky, = O ( l ) ,  the factors $+, $- and D are 
either 0 or 1. The potentials $11 and $il are just plane waves modulated in x only. 
The corresponding locked long waves are right-going below the x-axis, zero in the 
first quadrant, and are two opposite-going waves with equal amplitudes in the second 
quadrant. This is summarized below, 

0 in quadrant I 

(4.10) 

in quadrant I11 & IV 

E E  

where Osc { } stands for ‘the oscillatory part of { }. The amplitudes E and E’ are 
obtained from (3.10). Clearly, by themselves these locked long waves are 
discontinuous across the x-axis. We must now examine the long period oscillations 
in the near field, i.e. in the edge boundary along the positive and negative x-axis and 
add free long waves in the far field (kx,, ky,) = O(1).  

5. Long period oscillations in the near field of the edge boundary layer 

(2.9) 
The near field is independent of y1 and can be expanded in the manner of (2.8) and 

a, n a, n 

, Gr = c en C 11.1, e-imwt, (5.1) e-imwt 
@ =  C en C $nm 

n = l  m=-n n=1 m=-n 

where the zeroth harmonics $.,, and 11.1, depend only on y, z ,  x1 and t , .  From 
Laplace’s equation and the boundary condition on the seabed we have for n = 1,  2, 

1 (&+S)($n:) = O (0 < z < Id), 
( -h  < z < O),  

Taylor expansion of the kinematic condition on the free surface at z = h’+c 
gives, 

= a; + pqZ - q cz- q + 0 ( € 3 )  = CD; - v, . (rv, q + 0 ( € 3 )  ( z  = K ) .  (5.4) 
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Inserting (5.1) into this we obtain a t  the first order, 

@iOZ = 0 ( x  = h'), 
and a t  the second order 

25 

(5.5) 

g@iOz = ' h  ' [iw@il ' h  @;: + *I = ' h  ' Liw@iI ' h  @.',T- IW@;T v h  @.',I1 
= iw@il V i  @;: -iw@iT V i  @il = iw@il [ - k2 - iw@il [ - k2 $3 = 0 ( x  = h'). 

(5 .6)  

In  deducing the last equality we have used the fact that $il involves only 
propagating waves and satisfies the Helmholtz equation in the (2, y)-plane. It follows 
that 

also. Similar consideration a t  the interface gives 

?fb;oz = 0 ( x  = h'), (5-7)  

@ i O Z  = k20, = 0 (2 = 0). (5 .8)  

@ = ~ @ ~ , + e ~ @ ~ ~  with@,, = b,+c,y (n = 1,2) ,  (5.9) 

Thus the most general near field solution for the zeroth harmonic up to O(e2) is, 

where 6, and c ,  are unknown functions of xl, and t, only. The corresponding solutions 
in the upper layer are similar. 

Now the near field solution e@lo + E ~ @ ~ ~  must be matched asymptotically with the 
far field, i.e. 

~ $ 1 0 1 0 , + ~ 1 [ ~ ]  = @lO+",O = [ ~ l O l , - + Y l  [:::I0. - 
aY1  o+ 

(5.10) 

where [lo+ means the limit of I] as yl+O+. Equation (5.10) can be satisfied if 

c1 = 0, b, = 0, 

throughout the near field, and if 

(5.11) 

AO(X1,  Y1 = Of, t l )  = 61 = @IO(Xl> t l )  = 41,(X,> Y1 = 0-, t lL  (5.12) 

and A0Y1(X1 '  Y1 = Of, t l )  = c2 = @,ow = 410y1(X1r Y1 = 0-, tl). (5.13) 

Two similar equations hold for the upper layer. Thus the near field is effectively 
transparent to the long wave and matching is made directly between the far field 
potentials on both sides of the shadow and reflection edges. 

6.  The free long waves 

waves : 
The total slow potential in the far field is the sum of locked and free long 

$10 = $?o + $fO> # i O  = $2 + 9% (6.1) 

The potentials for the free long waves, distinguished by the superscript F, are 
governed by the homogeneous versions of (3 .3) ,  (3 .5) ,  (3.6) and (3 .7) ,  i.e. 

got, + hv; $F, = 0, 

-g!% = b;:t,, 

L=& - cot, + h'v; 5G = 0, 

P'(9EO + $;:tl) = P(SEO+ $E,,). 
(6 .2a,  b )  

(6.2c, d )  
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Eliminating cz0 and Go yields 
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(&- u: v:) (5- u: v:) [;;I = 0. 

From (5.12) and (5.13) we get the boundary conditions: 

(all XI) ,  ( 6 . 4 ~ )  

(all xl). (6.4d) 

From (6.4a, b)  and (6.4c, d ) ,  we immediately see that $Fo and $it are 
antisymmetric in x,. From (6.4c, d )  and the form of the solution to be stated shortly 
(6.9), $Fo and $it are also antisymmetric in yl. It is therefore mathematically 
sufficient to solve for the free long waves in any of the four quadrants. Accordingly, 
we choose to consider the first quadrant only. Furthermore we need the boundary 
conditions along the barrier 

and along the positive x-axis (shadow edge) 

We expect the free-wave displacements c:o and to have the same dependence on 
t ,  and xl. Being homogeneous solutions of (6.3), the free long waves are a linear 
combination of surface (barotropic) and internal (baroclinic) modes. They must 
therefore have the total wavenumbers 2Q/Us and 24/U,  respectively. Because U ,  is 
usually much smaller than Us,  under a wide range of conditions the wavenumber of 
the free long waves in the x-direction 24/Cg may lie between them, 

2 4  2 4  2Q -<-<- 
us c, u, 

Assuming this inequality, the free internal waves will have real and finite wave 
numbers in the y,-direction also, while the yl-component of the free-surface 
wavenumber is imaginary, implying that the surface mode is evanescent in the 
y,-direction. Thus the free internal waves must be inclined in the direction 

U 
8, = cos-1-2 (6.8) 

cg ' 
with respect to the x-axis and propagate into the shadow. In  all four quadrants, 
internal waves are radiated from the x-axis symmetrically in four directions, as 
sketched in figure 3. In the sense of geometrical optics, these free internal waves are 
bounded by the four rays 01, 02, 03 and @ in figure 3. For small density difference 
and kh' = 0(1), UJC,  can be very small (cf. 2.20). The angle OI is then close to in; 

- - _ _  
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thus the crests of the free baroclinic wave of long period are nearly perpendicular to 
the barrier. On the other hand, if U,/Cg x 1 for any reason, then 8, NN 0, implying that 
the resonated internal wave does not penetrate the shadow. Therefore shadow 
penetration and resonance do not occur together and the present second-order 
analysis is adequate for the former. 

We now give the formal solution of the free long wave potential between the rays 
01, 02. 03 and a. In  compact notation, they are 
- - _  

- (sgnx,) (sga y,) Re & exp -2iQ ~ , - ~ - i u , I y ~ l  [ ( ( ‘2 1) 
+ q5; exp ( - 2iR( t ,  - 2 - vI( y ,I))] , (6.9 b )  

which satisfy ( 6 . 4 ~ )  and (6.4d) respectively. The coefficients q5s, &, and q5; are to 
be determined. Physically &(&) corresponds to the barotropic mode in the lower 
(upper) layer, while corresponds to the baroclinic mode in the lower (upper) 
layer. The wavenumbers in the y-directions are iu, and uI ,  where: 

(6.10) 

Note that us and v, are both real because of (6.7) and that the barotropic mode is 
exponentially attenuating with y,. Near any limiting ray, say, a, there is a parabolic 
boundary layer within which q5Fo and 4:: are modified by the diffraction factor D(&) 
with 

& = -Xg1/(7cK~q)~ (K = 2Q/U,), (6.11) 

and ($,,$,) is a Cartesian coordinate system with 2, coinciding with the ray 

cos Or sin 8, { 5:) = [ - sin 8, cos J{  i:} (6.12) 

The product of the diffraction factor D and the potential in ( 6 . 9 ~ )  describes the 
‘radiated’ free long-wave field in the first quadrant (x,, y1 > 0). The free waves 
elsewhere can be simply inferred by antisymmetry with respect to both x, and y,. 
Since in general these waves propagate away from the y,-axis, the boundary 
conditions (6.5) are ineffective. In case 8, is nearly $, (6.5) is then automatically 
satisfied. 

and &. We 
first find from (6.2u-d) the ratio of the amplitudes of the potentials for the two 
modes. For the surface mode of the free long-waves, we replace the operator Vi in 
(6.2a, b)  by U;2a2/a2t;, eliminate and go with the help of ( 6 . 2 ~ )  and then integrate 
the result with respect to t , .  The ratio q5s/& is thus determined: 

It now remains to  determine the amplitude of the free waves $s, &,, 

(6.13) 

2 FLM 192 
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Replacing Ug by U;,  we get for the internal free wave mode: 
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(6.14) 

These relations are of course well known. Applying (6.4a, b)  to (6.9) we have: 

$I + $s = iEAi ,  $; + $; = iEAi.  (6.15a, b )  

Equations (6.13) to (6.15) can be immediately solved to give $I,  $s, $; and $&. The 

( 6 . 1 6 ~ )  

(6.16b) 

where E and E are obtained from the solution of (3.10). $s and 4; then follow from 
(6.13) and (6.14). The corresponding interface displacements are found from ( 6 . 2 ~ ) .  
By defining Q and g, from go in the manner of (6.9) we easily find, in particular, the 
free baroclinic component of the interfacial displacement : 

(6.17) 

For the same mode, the free surface displacement is smaller than CI by a fac- 
tor of O ( A p / p )  and is insignificant. I n  view of the discussion of figure 2 and (2.18) 
Q *  ($s, $&, $I, $;) are independent of 0. It follows that Q is the same for all 52. In 
the limit of unmodulated short waves 52 = 0 starting from rest, 5, adds to the steady 
set-down on the interface. 

Figure 4 shows some values of gI, normalized as -cI = - ~ l h / a 2 ,  vs. kh' for three 
different values of h'/h and A p / p  = 0.01. Results for A p / p  = 0.001 are again found 
to be similar, hence omitted. As in the case of locked long waves, -g increases for 
decreasing h'lh. For very small kh', it can be shown analytically from (3.10)-(3.11) 
and (6.16)-(6.17) that CI remains finite even though E and E' become unbounded. 
This is because resonance is associated with the barotropic mode while gI is the 
baroclinic mode; a detailed proof of this is given in the Appendix. As kh' increases, 
- CI increases because of the initial approach to resonance as C, t U,. Nevertheless for 
a sufficiently wide range of kh' the quantitative results of - are still consistent with 
the second-order approximation employed here. Thus, while a long barrier may 
provide a shield against short surface waves, it  may induce long internal waves that 
enter the geometrical shadow. This effect is a combined consequence of linear 
diffraction, nonlinearity and the special dispersive nature of the two-layered system 
(cf. (6.7)). 

Finally, it is useful to have some quantitative idea about the circumstances where 
the mechanism of this paper is relevant. In  a large laboratory basin (50m 
wide x 50 m long, say), we may choose h' = h = 0.3 m, Ap/p = 0.1 and the incident 
surface-wave frequency w = 2n/T = 10 Hz. The following values for the short 
surface wave are than implied: k h  = 3.3, and C, = 0.8 m/s. The phase speed of the 
free internal wave is UI = 0.39 m/s according to (2.20). If we choose the group period 
to be 5oT, the frequency of the long internal wave is then 2 Q = 0 . 4 H z .  The 
wavelength should be A,  = 6.3 m, corresponding to k,h' = k,h  = 0.3. Thus the 
second-order internal wave is approximately of the shallow-water type and the 
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FIGURE 4. Normalized amplitude of free baroclinic long waves. 
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present theory should be verifiable directly by experiments. I n  an estuary the 
following values are possible, w = 1 Hz (T = 2~ s), h' = 10 m, h = 20 m, and Ap/p = 
0.01. These imply kh' = 1,  C ,  = 5 m/s and a wavelength of h = 20x m. The phase 
speed of the free baroclinic wave is now U ,  = 0.8 m/s. If TI = 100 T = 200x s, then 
the wavelength is A, = 240 m (i.e. kh' = 0.25), which is rather long compared to h 
but not quite so long compared to h. In  this case the present theory can give only a 
crude quantitative estimate. Also, in an ocean the group period is likely to be much 
shorter than 100T, and the density constant Ap/p is much smaller than 0.01. Hence 
the second-order baroclinic waves are then not necessarily in shallow water. The 
present theory must be modified for quantitative accuracy. Lastly, the barrier can 
be either a floating structure or a natural barrier of more complex geometry. While 
the details of diffraction may change, the main feature of shadow penetration should 
remain. 

Invasion of long waves, which are generated by interacting short waves, into zones 
where short waves cannot penetrate may occur in other circumstances also. For 
example, by Bragg resonance, modulated short surface waves can be substantially 
reflected by a large number of periodically spaced parallel bars, but free long waves 
are found to be prominent on the transmission side (Hara & Mei 1987). Although for 
a homogeneous fluid, no long wave can leak into the shadow of a semi-infinite barrier, 
certain changes of lateral boundaries and hence of the diffraction pattern of the short 
waves can result in long-wave penetration. An example of engineering interest is a 
fishing harbour with a small entrance. While wind-induced surface waves of O( 10 s) 
period may be largely kept outside the harbour, long waves of O(1-5 min) period 
generated within by nonlinearity may be enhanced by harbour resonance. These 
possibilities bear partial resemblance to surf beats (here without the surf), and are 
worthy of further theoretical and experimental investigations. 
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Appendix. The limit of as lch'J,O 
Eliminating Z and E among the first, second and the fourth of (3.10), we get 

- 2isZhE + (Ci - gh') 2 = C:(a, + a,) + h'a,. 

Now we eliminate Z and E' among the first, third and fourth of (3.10) to get 

E-p'g.2' = Apga,+a,+p'a,. 

The last two equations may be solved to  give: 

2iOE { 2' } = [;:: ;j-l {:j> 
where 

R,, = h, R,, = Ci-gh', 

R,, = -PIS, 

Qz = Apga, + a3 + r'a,. 

gh 
ci 

R,, = Ap--p, 

Q, = CE(a, + az) + Idaq, 

We may now calculate the braces { } in (6.16 b ) ,  using the fourth of (3.1): 

u; - gh' 
gh 

where P = ____ , D = R,, R,,-R,, R,, = pC,'(Ci-Ug)(C;-U;). 

Afte eliminating the factor Ci  - U,Z, we get 

which is finite at k = 0. The corresponding limit of 8, is, 

- 2iOh gh' - Uf 6=Fm (E-PE)i 

Note from (2.15) that kA,, is proportional to the surface wave amplitude a which 
is kept constant as k 4 0. This formula has been used to check the computations in 
figure 4. 
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